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Large Language Modaels

® Transformers, Attentions
* Serving and inference
® Parallelization

* Attention optimization



VLLM: Efficient memory management for LLM inference

Inspired by virtual memory and paging

Memory management in OS Memory management in vLLM
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Token block

* A fixed-size contiguous chunk of
memory that can store token states
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Token block

* A fixed-size configuous chunk of memory that can store token

Token blocks
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Paged Atftention

* An attention algorithm that allows for storing continuous keys

and values In hon-contiguous memory space

Key and value vectors
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Logical & physical token blocks

Physical token blocks
(KV Cache)
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Logical & physical token blocks

Physical token blocks
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Logical & physical token blocks
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Logical & physical token blocks
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Logical & physical token blocks

Physical token blocks
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Logical & physical token blocks
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Serving multiple requests
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Memory efficiency of VvLLM

* Minimal internal fragmentation
* Only happens at the last block of a sequence
* # wasted tokens / seq < block size

®* Seqgquence: O(100) — O(1000) tokens

® Block size: 16 or 32 tokens
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Effectiveness of PagedAttention
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Other Inference Technigues

* Speculative Decoding
* optimization for small bs, decoding multiple tokens per fwd pass
* Chunked pretfill
®* Continuous batching enhancement
®* Disaggregated Serving
®* Prefix caching

* NMore...



Focus of the rest of lectures

Data Model Compute

Math primitives

{xi}ni=1 (mostly matmul) ?Make LLMs run on
(large clusters of ) GPUs

A repr that expresses the
computation using primitives



BiIg Models have Emergent capabillities

“Pathways Language Model (PalM): Scaling to 540 Billion Parameters for Breakthrough Performance”,
S Nareng, A Chowdhery et dl, https:/ /ai.googleblog.com /2022 /04 /pathways-language-modelpalm-scaling-tohiml
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Growing gap between demand and supply

Training compute (FLOPs) of milestone Machine Learning systems over time
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“Compute trends across three eras of machine leaming’, J. Sevilla, https:/ardiv.labs.arxiv.org/html/2202.05924
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No way out but to parallelize
these workloads !



Dataflow Graph

Autodiff

Parallelization

* Goal: parallelize the graph compute over mulfiple devices

How fo partition the computational graph
on the device clustere

Fast connections
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Parallelization Problems

* How to partition

* How to communicate
* How to schedule

® Consistency

* How to auto-parallelize¢



Partitioning Computation Graph
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Partitioning Computation Graph
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Strategy 2: Intra-operator Parallelism
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More Parallelisms...

Multiple intra-op strategies for a single node

D Row-partitioned D Column-partitioned D Replicated D Device 3 D Device 4

More strategies
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Summary: Inter-op and Intra-op Parallelisms
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Inter-op parallelism: Assign different operators to different devices.
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Intra-op parallelism: Assign different regions of a single operator to different devices.
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Inside Intra- and Inter-op Parallelism
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Looking Info The Communication
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Parallelism: Key Characteristics

W W ) Device

-
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Inter-op parallelism: Requires point-to-point communication but results in device idle
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Intra-op parallelism: Devices are busy but requires collective communication
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Intfer-op and Intra-op Parallelism: Characteristics
| mportant]
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Computational View of ML Parallelisms

Classic view New view (this class)

Data parallelism Inter-op parallelism

Model parallelism Intra-op parallelism



Two Views of ML Parallelisms

Data and model parallelism

Two plillars: data and model.

b4 “Data parallelism” is general and
precise.

? ‘Model parallelism” is vague.

?The view creates ambiguity for
methods that neither partitions data nor
the model computation.

New: Inter-op and Infra-op
oarallelism.

Two plillars: computational graph and
device cluster

L4 This view is based on their computing

characteristics.

L4 This view facilitates the development

of new pardallelism methods.

34



ML Parallelization under New View

Fast connections
[ Wl /{ W2 }\ Y Slow connections
matmul o
[ o1y’ Theme problem:
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Data Parallelism

[ w+2 ): ]

q—{matmul relu matmul MSE ]

How o iImplement this
communication?




Two Solutions

®* Parameter Server
* AllIReduce
* Key assumption:
* The model can fit into an (GPU) worker memory hence we can

create many replica
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